ELISA TEST PROCEDURE

PREPARING THE TEST PLATE

a) Remove an NDV antigen test plate from the protective bag and label according to dilution plate identification.

b) Add 10 µl Dilution Buffer to all wells.

c) Add 50 µl diluted NDV Positive Control Serum to wells A1, A3 and H11. Discard pipette tip.

d) Using an 8 or 12 channel pipette transfer 50 µl of each of the diluted serum samples and Normal Control Serum samples from the dilution plate to the corresponding walls of the NDV coated test plate. Discard pipette tips after each row of sample is transferred. Transfer of samples to the ELISA plate should be done as quickly as possible.

e) Incubate plate for 30 minutes at room temperature.

WASH PROCEDURE

f) Tap out liquid from each well into an appropriate vessel containing bleach or other decontamination agent.

h) Using an 8 or 12 channel pipette (or comparable automatic washing device), fill each well with approximately 300 µl Wash Solution. Allow to soak in wells for 3 minutes; then discard contents into an appropriate waste container (waste container should contain bleach solution). Tap inverted plate to ensure that all residual liquid is removed. Repeat wash procedure 2 more times.

NOTE: The wash procedure is a very critical step in any ELISA procedure. Please follow the above steps as directed.

ADDITION OF ANTI-CHICKEN IgG PEROXYDASE CONJUGATE, SUBSTRATE AND STOP SOLUTION

i) Using an 8 or 12 channel pipette (or transpulping device) dispense 100 µl of diluted conjugate (prepared as described above) into each assay well. Discard pipette tip.

j) Incubate for 30 minutes at room temperature.

k) WASH as in steps i and j above.

l) Using an 8 or 12 channel pipette (or transpulping device) add 100 µl Dilution Buffer Solution into each test well. Discard pipette tips.

m) Incubate 15 minutes at room temperature.

n) Using an 8 or 12 channel pipette (or transpulping device) add 100 µl diluted Stop Solution to each test well. Discard pipette tips.

o) Allow bubbles to dissipate before reading plate.

MANUAL PROCESSING OF DATA

a) Read the plate using an ELISA plate reader set at 405-410 nm. Be sure to blank the reader as directed.

b) Calculate the average Normal Control Serum absorbance (Optical Density (O.D.)) by using the absorbance values of wells A2, A3 and H11. Calculate the average Normal Control Serum absorbance absorbance using values obtained from wells A2, H10 and H12. Record both averages.

c) Subtract the average normal control absorbance from the average positive absorbance. The difference is the Corrected Positive Control.

d) Calculate a sample to positive (Sp) ratio by subtracting the average normal control absorbance from each sample absorbance. The difference is divided by the corrected positive control. Use the following equation for Sp:

\[\text{CORRECTED POSITIVE CONTROL absorbance} = \frac{\text{Sample absorbance} - \text{Normal Control absorbance}}{\text{Average Normal Control absorbance}} \]

\[\text{Sp} = \frac{\text{Sample absorbance} - \text{Normal Control absorbance}}{\text{Average Normal Control absorbance}} \]

e) An NDV ELISA titer can be calculated by the following suggested equation:

\[\text{LOG}_{10} \text{TITER} = (1.464 \times \text{LOG}_{10} \text{Sp}) + 3.740 \]

\[\text{TITER} = \text{ANTILOG} \text{LOG}_{10} \text{TITER} \]

Example:

1. Sample Positive Absorbance: 0.585, 0.610, 0.590
 Average = (0.585 + 0.610 + 0.590) / 3 = 0.595

2. Example Normal Controls:
 0.078, 0.067, 0.057
 Average = (0.078 + 0.067 + 0.057) / 3 = 0.067

3. Corrected Positive Control:
 (0.595) – (0.067) = 0.528

4. Example Sp value calculation:
 Absorbance of sample = 0.560
 Average (0.560 - 0.067) = 0.528
 Example Calculation of titer using the Sp from above:
 \[\text{LOG}_{10} \text{TITER} = 1.464 \times \text{LOG}_{10} (0.528) = 3.740 \]
 \[\text{TITER} = \text{ANTILOG} 3.70 = 10,000 \]

RESULTS

Assay Control Values:

Valid NDV ELISA results are obtained when the average optical density (O.D.) value of the Normal Control Serum is less than 0.200 and the Corrected Positive Control (CPC) value range is between 0.250 and 0.900. If either of these values are out of range, the NDV test results should be considered invalid and the samples should be retested. Samples testing with an Sp value of less than or equal to 0.150 will receive a 0 titer value and are considered negative for NDV antibody. Under optimal conditions the suggested O.D. value ranges of 0.060 to 0.800 for NDV Normal Control Serum and 0.40 to 0.800 for NDV Positive Control Serum should be adhered to for the most consistent laboratory test results.

Please note that titer with O.D. values which do not fall within the suggested O.D. ranges above do not constitute an invalid test.

Example Positive Control Absorbance:

0.585, 0.610, 0.590

Interpretation of Results

The NDV ELISA titer values obtained represent a comparison of the NDV antibody level within each field chicken serum tested and the NDV ELISA kit positive and normal control sera. Therefore, it is important to first determine the NDV ELISA positive and normal control sera values obtained are valid as detailed above in the “Assay Control Values” section of this pamphlet before NDV-ELISA results are interpreted.

A “0” NDV ELISA titer represents a chicken serum sample that contains an extremely low to insignificant NDV antibody level compared to the NDV ELISA kit positive and normal control sera.

An NDV ELISA titer value above “0” indicates that a chicken serum sample contains a significant and ELISA-detectable NDV antibody level compared to the NDV ELISA kit positive and normal control sera. However, these titers do not imply or ensure “protection” nor provide serologic differentiation between an NDV vaccine response or NDV field infection. Optimal NDV vaccine administration practices and “protective” flock NDV titer target values must be determined by each NDV ELISA kit user by comparing flock pre- and post-vaccination NDV ELISA results (i.e. coefficient of variation (%CV) and geometric titer (GMT) values) with flock performance parameters (i.e. morbidity, mortality, flock body weight gain or uniformity over time).

BIBLIOGRAPHY

NEWCASTLE DISEASE VIRUS ANTIBODY TEST KIT

GENERAL INFORMATION AND INTENDED USES

Newcastle Disease Virus (NDV) causes a range of disease states from mild respiratory disease to severe diarrhea and death. The severity of the disease is determined by the infecting strain or NDV. Highly pathogenic strains (Velogenic NDV) can cause swelling of the tissues around the eyes, diarrhea and death within 5 days after exposure (1,2). Moderately pathogenic strains (Mesogenic NDV) produce acute respiratory tract infections and edulations in egg production (3). Mild strain (Lentogenic NDV) produce an inapparent respiratory infection. Assessment of antibody levels in the bird to the NDV group antigen by Enzyme-Linked Immunosorbent Assay (ELISA) has been previously described by Snyder and coworkers (4).

Preparation of NDV Positive Control

An NDV Positive Control Serum has been provided with this kit. Dilute the appropriate volume of NDV Positive Control Serum with Dilution Buffer (1:50) in clean, separate 5 ml test tubes. For example, dilute 6 ml of positive control serum in 300 µl Dilution Buffer. Mix well. 150 µl of NDV Positive Control is needed per ELISA plate.

Preparation of Conjugate Solution

The horseradish peroxidase conjugated anti-chicken IgG (F(2,3)) is supplied in HRP Stabilizer. Dilute 100 ml stock conjugate in 10 ml Dilution Buffer (1:100 dilution). Mix well. This 10 ml preparation will supply sufficient conjugate for one 96 well ELISA plate.

Preparation of Wash Solution

Dilate 20 ml concentrated Wash Solution in 300 ml laboratory grade (distilled or R.O.) water (1:20). Mix well. Approximately 400 ml Wash Solution is needed for each 96 well ELISA plate.

Preparation of the Substrate Solution

Determine the total number of plates needed to assay the samples. Each plate will require approximately 10 ml substrate solution. For example, 10 plates requires 100 ml substrate. For best results, the substrate solution must be equilibrated to room temperature before use.

Preparation of IX Stop Solution

Dilute 2 ml concentrated Stop Solution in 8 ml laboratory grade (distilled or R.O.) water (1:5). Mix well. Approximately 10 ml Stop Solution is needed for each 96 well ELISA plate. NOTE: Storage of IX Stop Solution at refrigerated temperatures may cause the formation of a white solid. This does not affect product performance. Warm at room temperature or 37°C to dissolve before use.

NEWCASTLE DISEASE VIRUS ANTIBODY TEST KIT

EQUIPMENT AND MATERIALS REQUIRED

- 10 µl Normal Control Serum (NCS)
- 10 µl NDV Positive Control Serum
- 1 NDV antigen coated plate

NOTE: Store all reagents provided in the kit at 2-8°C.

SAMPLE DILUTION PROCEDURE

Dilute sera samples using Dilution Buffer in a clean, uncoated 96 well microtiter plate. Set up samples and controls as shown in Figure 1.

PREPARATION OF THE SERUM DILUTION PLATE

a) Add 300 µl Dilution Buffer to each well of an uncoated 96 well microtiter plate. This plate is referred to as the serum dilution plate.

b) Add 6 µl unknown serum per well as per Figure 1 (producing a 1:50 dilution). Start with well A4 and end with well H9 (moving left to right, row by row of wells). For example, wells 1 through 10 contain the dilution sera of flock 1, wells 11-20 contain the dilution sera of flock 2, etc.

c) Add 6 µl of Normal Control Serum (producing a 1:50 dilution) to wells A2, H10 and H12.

d) Aspirate and remove any liquid in dilution plate wells A1, A3 and H11.

e) Allow all diluted sera to equilibrate in Dilution Buffer for 5 minutes before transferring to an NDV antigen coated ELISA plate.

f) Diluted serum should be tested within 24 hours. This dilution format provides adequate quantities of diluted sera samples to conduct four additional ProFLOK® ELISA tests (i.e. IBV, REO, HV and ILT) using the same serum dilution plate.

(4°C for up to four days or -20°C for longer periods) are needed to provide reliable test results.

REAGENTS REQUIRED TO PERFORM 90 TESTS

- 100 µl Goat anti-Chicken IgG (F(2,3)) Peroxidase Conjugate Solution
- 40 µl Dilution Buffer
- 10 µl ABTS-Hydrogen Peroxide Substrate Solution
- 2.5 ml 5X Stop Solution (dilute [1:5] with laboratory grade water)
- 20 ml 20X Wash Solution (dilute [1:20] with laboratory grade water)

NOTE: Store all reagents provided in the kit at 2-8°C.

PREPARATION OF NDV ANTIGEN COATED PLATES

a) Handle all reagents and samples as biohazardous material.

b) Keep all reagents away from skin and eyes. If exposure should occur, immediately flush affected areas with cold water.

c) Wash solution, control sera, test plates, field samples and all other kit lot reagents should be properly decontaminated with bleach solution before disposal.

d) Take special care not to contaminate any of the test reagents. A single dropped serum should be carefully rinsed and discarded. Use only clean pipette tips for transfer of sera. Pipette by suction only.

e) Humidity indicators are supplied with each plate. If any of the indicators exhibit a pink color, the plate may be compromised in some way; decontaminate (i.e. wash the plate with bleach solution) and dispose of the plate.

f) The best results are achieved by following the protocols as they are described below, using good, safe laboratory techniques.

g) Do not use this kit after the expiration date.

h) Normal Control and Positive Control contain up to 0.03% Thimerosal. Wash Solutions contains up to 2.9 g/L. Imidizole. Contactive contains up to 2.0 ml/l Microcide III.

i) NEVER PIPEET BY MOUTH.

ALLOW ALL REAGENTS TO COME TO ROOM TEMPERATURE BEFORE STARTING:

SAMPLE COLLECTION

For routine serologic flock monitoring, it is suggested that at least 10 or more sera per flock be randomly collected at standard time intervals (i.e. every four weeks). Proper sample collection procedures, serum harvest and serum sample storage

11/19/4 7:39 AM