Prescribing Information for Use in Swine

Lutalyse® Injection

(dinoprost tromethamine injection)

5 mg dinoprost/mL as dinoprost tromethamine

Caution: Federal (USA) law restricts this drug to use by or on the order of a licensed veterinarian.

DESCRIPTION

LUTALYSE® Injection (5 mg dinoprost/mL) is a sterile solution containing the naturally occurring prostaglandin F₂ alpha (dinoprost) as the tromethamine salt. Each mL contains dinoprost tromethamine equivalent to 5 mg dinoprost: also, benzyl alcohol, 16.5 mg added as preservative and water for injection.

When necessary, pH was adjusted with sodium hydroxide and/or hydrochloric acid. Dinoprost tromethamine is a white or slightly off-white crystalline powder that is readily soluble in water at room temperature in concentrations to at least 200 mg/mL.

INDICATIONS FOR USE

Swine:

· For parturition induction in swine

DOSAGE AND ADMINISTRATION

As with any multi-dose vial, practice aseptic techniques in withdrawing each dose to decrease the possibility of post-injection bacterial infections. Adequately clean and disinfect the vial stopper prior to entry with a sterile needle and syringe. Use only sterile needles, and use each needle only once.

No vial stopper should be entered more than 20 times. For this reason, the 100 mL bottle should only be used for cattle. The 30 mL bottle may be used for cattle, swine, or mares.

Swine

For Parturition Induction in Swine: For intramuscular use for parturition induction in swine.

LUTALYSE Injection is indicated for parturition induction in swine when injected within 3 days of normal predicted farrowing. The response to treatment varies by individual animals with a mean interval from administration of 2 mL LUTALYSE Injection (10 mg dinoprost) to parturition of approximately 30 hours. This can be employed to control the time of farrowing in sows and gilts in late gestation.

Management Considerations: Several factors must be considered for the successful use of LUTALYSE Injection for parturition induction in swine. The product must be administered at a relatively specific time (treatment earlier than 3 days prior to normal predicted farrowing may result in increased piglet mortality). It is important that adequate records be maintained on (1) the average length of gestation period for the animals on a specific location, and (2) the breeding and projected farrowing dates for each animal. This information is essential to determine the appropriate time for administration of LUTALYSE Injection.

WARNINGS AND PRECAUTIONS

User Safety: Not for human use. Keep out of the reach of children. Women of childbearing age, asthmatics, and persons with bronchial and other respiratory problems should exercise **extreme caution** when handling this product. In the early stages, women may be unaware of their pregnancies. Dinoprost tromethamine is readily absorbed through the skin and can cause abortion and/or bronchiospasms. Accidental spillage on the skin should be washed off **immediately** with soap and water.

Residue Warnings: No preslaughter drug withdrawal period is required for labeled uses in swine. Use of this product in excess of the approved dose may result in drug residues.

Animal Safety Warnings: Severe localized clostridial infections associated with injection of LUTALYSE Injection have been reported. In rare instances, such infections have resulted in death.

Aggressive antibiotic therapy should be employed at the first sign of infection at the injection site whether localized or diffuse. Do not administer intravenously (IV) as this route may potentiate adverse reactions. Non-steroidal anti-inflammatory drugs may inhibit prostaglandin synthesis; therefore this class of drugs should not be administered concurrently. Do not administer to sows and/or gilts prior to 3 days of normal predicted farrowing as an increased number of stillbirths and postnatal mortality may result.

ADVERSE REACTIONS

Swine: The most frequently observed side effects were erythema and pruritus, slight incoordination, nesting behavior, itching, urination, defecation, abdominal muscle spasms, tail movements, hyperpnea or dyspnea, increased vocalization, salivation, and at the 100 mg (10x) dose only, possible vomiting. These side effects are transitory, lasting from 10 minutes to 3 hours, and were not detrimental to the health of the animal.

CONTACT INFORMATION

For a copy of the Safety Data Sheet or to report adverse reactions, call Zoetis Inc. at 1-888-963-8471. For additional information about adverse drug experience reporting for animal drugs, contact FDA at 1-888-FDA-VETS or www.fda.gov/reportanimalae.

CLINICAL PHARMACOLOGY

General Biologic Activity: Prostaglandins occur in nearly all mammalian tissues. Prostaglandins, especially PGE's and PGF's, have been shown, in certain species, to 1) increase at time of parturition in amniotic fluid, maternal placenta, myometrium, and blood, 2) stimulate myometrial activity, and 3) to induce either abortion or parturition. Prostaglandins, especially PGF $_2$ a, have been shown to 1) increase in the uterus and blood to levels similar to levels achieved by exogenous administration which elicited luteolysis, 2) be capable of crossing from the uterine vein to the ovarian artery (sheep), 3) be related to IUD induced luteal regression (sheep), and 4) be capable of regressing the corpus luteum of most mammalian species studied to date. Prostaglandins have been reported to result in release of pituitary tropic hormones. Data suggest prostaglandins, especially PGE's and PGF's, may be involved in the process of ovulation and gamete transport. Also PGF $_2$ a has been reported to cause increase in blood pressure, bronchoconstriction, and smooth muscle stimulation in certain species.

Metabolism: A number of metabolism studies have been done in laboratory animals. The metabolism of tritium labeled dinoprost (³H PGF₂ alpha) in the rat and in the monkey was similar.

Although quantitative differences were observed, qualitatively similar metabolites were produced.

A study demonstrated that equimolar doses of 3H PGF $_2$ alpha Tham and 3H PGF $_2$ alpha free acid administered intravenously to rats demonstrated no significant differences in blood concentration of dinoprost. An interesting observation in the above study was that the radioactive dose of 3H PGF $_2$ alpha rapidly distributed in tissues and dissipated in tissues with almost the same curve as it did in the serum. The half-life of dinoprost in bovine blood has been reported to be on the order of minutes. A complete study on the distribution of decline of 3H PGF $_2$ alpha Tham in the tissue of rats was well correlated with the work done in the cow. Cattle serum collected during 24 hours after doses of 0 to 250 mg dinoprost have been assayed by RIA for dinoprost and the 15-keto metabolites. These data support previous reports that dinoprost has a half-life of minutes. Dinoprost is a natural prostaglandin. All systems associated with dinoprost metabolism exist in the body; therefore, no new metabolic, transport, excretory, binding or other systems need be established by the body to metabolize injected dinoprost.

TARGET ANIMAL SAFETY

Laboratory Animals: Dinoprost was non-teratogenic in rats when administered orally at 1.25, 3.2, 10.0 and 20.0 mg dinoprost/kg/day from day 6th-15th of gestation or when administered subcutaneously at 0.5 and 1.0 mg/kg/day on gestation days 6, 7 and 8 or 9, 10 and 11 or 12, 13 and 14. Dinoprost was non-teratogenic in the rabbit when administered either subcutaneously at doses of 0.5 and 1.0 mg dinoprost/kg/day on gestation days 6, 7 and 8 or 9, 10 and 11 or 12, 13 and 14 or 15, 16 and 17 or orally at doses of 0.01, 0.1 and 1.0 mg dinoprost/kg/day on days 6-18 or 5.0 mg/kg/day on days 8-18 of gestation. A slight and marked embryo lethal effect was observed in dams given 1.0 and 5.0 mg dinoprost/kg/day respectively. This was due to the expected luteolytic properties of the drug.

A 14-day continuous intravenous infusion study in rats at 20 mg PGF $_{2\alpha}$ per kg body weight indicated prostaglandins of the F series could induce bone deposition. However, such bone changes were not observed in monkeys similarly administered LUTALYSE Injection at 15 mg dinoprost per kg body weight for 14 days.

Swine: In pigs, evaluation was made of clinical observations, food consumption, clinical pathologic determinations, body weight changes, urinalysis, organ weights, and gross and microscopic observations following treatment with single doses of 10, 30, 50 and 100 mg dinoprost administered intramuscularly. The results indicated no treatment related effects from dinoprost treatment that were deleterious to the health of the animals or to their offspring.

HOW SUPPLIED

LUTALYSE Injection is available in 30 and 100 mL vials.

STORAGE, HANDLING, AND DISPOSAL

Store at controlled room temperature 20° to 25°C (68° to 77°F). Use contents within 12 weeks of first vial puncture. Protect from freezing.

Approved by FDA under NADA # 108-901

zoetis

Distributed by: Zoetis Inc. Kalamazoo, MI 49007

Revised: September 2021