SUBSTANCES

M. bovis.

MICs

The use of DRAXXIN Injectable Solution is contraindicated in animals previously found to be tolerant to > 64

INDICATIONS

Beef and Non-Lactating Dairy Cattle

Adverse Reactions

Cattle

Foot Rot

Swine

SAFETY

Swine were dosed intramuscularly in both experiments with a total of 7.5 mg/kg BW of the antibiotic, corresponding to 54 mg/kg BW of tulathromycin in a 25 kg pig. The control group received saline injections. The pigs were treated 24 h prior to the tandem inoculation with dual SRD pathogens. The treatment success rate was significantly greater (P < 0.05) in the saline-treated animals (24% vs. 70.5%) compared to saline-treated pigs (46.1%).

Foot Rot

The effectiveness of DRAXXIN for the treatment of foot rot in swine was evaluated in two field studies. Cattle dosed with saline foot rot were treated and with a single subcutaneous dose of 2.5 mg/kg BW of tulathromycin. The control group were saline-treated saline-treated pigs (P < 0.0001) in both DRAXXIN-treated calves compared to saline-treated calves (24% vs. 63% and 83% vs. 3.5% respectively).

Swine

Time to improvement

The treatment success rate was significantly greater (P < 0.05) in both studies for DRAXXIN-treated calves compared to saline-treated calves. Additionally, time to improvement was significantly less (P < 0.001) in both studies for DRAXXIN-treated calves compared to saline-treated calves.

Foot Rot

The effectiveness of DRAXXIN for the treatment of foot rot in swine was evaluated in two field studies. Cattle dosed with saline foot rot were treated and with a single subcutaneous dose of 2.5 mg/kg BW of tulathromycin. The control group were saline-treated saline-treated pigs (P < 0.0001) in both DRAXXIN-treated calves compared to saline-treated calves. Additionally, time to improvement was significantly less (P < 0.001) in both studies for DRAXXIN-treated calves compared to saline-treated calves.

Foot Rot

The effectiveness of DRAXXIN for the treatment of foot rot in swine was evaluated in two field studies. Cattle dosed with saline foot rot were treated and with a single subcutaneous dose of 2.5 mg/kg BW of tulathromycin. The control group were saline-treated saline-treated pigs (P < 0.0001) in both DRAXXIN-treated calves compared to saline-treated calves. Additionally, time to improvement was significantly less (P < 0.001) in both studies for DRAXXIN-treated calves compared to saline-treated calves.

Foot Rot

The effectiveness of DRAXXIN for the treatment of foot rot in swine was evaluated in two field studies. Cattle dosed with saline foot rot were treated and with a single subcutaneous dose of 2.5 mg/kg BW of tulathromycin. The control group were saline-treated saline-treated pigs (P < 0.0001) in both DRAXXIN-treated calves compared to saline-treated calves. Additionally, time to improvement was significantly less (P < 0.001) in both studies for DRAXXIN-treated calves compared to saline-treated calves.

Foot Rot

The effectiveness of DRAXXIN for the treatment of foot rot in swine was evaluated in two field studies. Cattle dosed with saline foot rot were treated and with a single subcutaneous dose of 2.5 mg/kg BW of tulathromycin. The control group were saline-treated saline-treated pigs (P < 0.0001) in both DRAXXIN-treated calves compared to saline-treated calves. Additionally, time to improvement was significantly less (P < 0.001) in both studies for DRAXXIN-treated calves compared to saline-treated calves.

Foot Rot

The effectiveness of DRAXXIN for the treatment of foot rot in swine was evaluated in two field studies. Cattle dosed with saline foot rot were treated and with a single subcutaneous dose of 2.5 mg/kg BW of tulathromycin. The control group were saline-treated saline-treated pigs (P < 0.0001) in both DRAXXIN-treated calves compared to saline-treated calves. Additionally, time to improvement was significantly less (P < 0.001) in both studies for DRAXXIN-treated calves compared to saline-treated calves. Additionally, time to improvement was significantly less (P < 0.001) in both studies for DRAXXIN-treated calves compared to saline-treated calves.